
WikiPrint - from Polar Technologies

1

Forecast verification: a worked example

In this example we obtain data from the NCEP's CFSv2 seasonal forecasting system (dataset = "CFSv2_seasonal"). In particular, in this example

we will retrieve maximum daily surface temperature (var = "tasmax") for boreal summer (JJA, season = 6:8) for a rectangular domain centered on

the Iberian Peninsula and France (lonLim = c(-10,15) and latLim = c(35,50)), for the period 1981-2000 (years = 1981:2000), and

considering the first 9 ensemble members (members = 1:9) and a lead-month 2 forecast 2 (leadMonth = 2).

We will illustrate the verification of these predictions data against the observational gridded datasets WATCH Forcing Dataset-ERA-Interim (WFDEI,

dataset = "WFDEI"), also available via the ECOMS-UDG. To this aim, we will use the tools developed within the projects SPECS and EUPORIAS. In

particular, we will use the verification routines available in the R package SpecsVerification (available on CRAN). However, instead of using them

directly, we will use the user-friendly interface implemented in package easyVerification, via the wrapper function veriApply (To find out more on

the functionality in the easyVerification package, please read the vignette with the R instruction vignette("easyVerification"))

Package loading/install

We first load (and install if necessary) the required libraries. loadeR.ECOMS and downscaleR are loaded for data loading and manipulation

respectively:

library(loadeR.ECOMS)

library(downscaleR)

The two packages related with verification are next installed if not already present:

Attempting the installation of SpecsVerification

if (!require("SpecsVerification")) {

 install.packages("SpecsVerification")

}

Attempting the installation of easyVerification

if (!require("easyVerification")) {

 if (!require(devtools)) {

 install.packages("devtools")

 }

 devtools::install_github("MeteoSwiss/easyVerification", build_vignettes=TRUE)

}

Data loading from the ECOMS-UDG

tx.forecast <- loadECOMS(dataset = "CFSv2_seasonal",

 var = "tasmax",

 members = 1:4,

 lonLim = c(-10 ,15),

 latLim = c(35, 50),

 season = 6:8,

 years = 1991:2000,

 leadMonth = 2)

[2016-05-12 12:56:18] Defining homogeneization parameters for variable "tasmax"

[2016-05-12 12:56:18] Opening dataset...

[2016-05-12 12:56:48] The dataset was successfuly opened

[2016-05-12 12:56:48] Defining geo-location parameters

[2016-05-12 12:56:49] Defining initialization time parameters

[2016-05-12 12:56:51] Retrieving data subset ...

[2016-05-12 13:07:02] Done

plotMeanGrid(tx.forecast, multi.member = TRUE)

WikiPrint - from Polar Technologies

2

tx.obs <- loadECOMS(dataset = "WFDEI",

 var = "tasmax",

 lonLim = c(-10 ,15),

 latLim = c(35, 50),

 season = 6:8,

 years = 1991:2000)

[2016-05-12 14:03:40] Defining homogeneization parameters for variable "tasmax"

[2016-05-12 14:03:40] Opening dataset...

[2016-05-12 14:03:42] The dataset was successfuly opened

[2016-05-12 14:03:42] Defining geo-location parameters

[2016-05-12 14:03:42] Defining time selection parameters

[2016-05-12 14:03:42] Retrieving data subset ...

[2016-05-12 14:03:52] Done

plotMeanGrid(tx.obs)

WikiPrint - from Polar Technologies

3

Data preprocessing: interpolation and aggregation using downscaleR

Data interpolation

To be able to validate the forecasts, we first have to interpolate either the forecasts or the observations to have the data on a common grid. We

interpolate the observations to the grid of the forecasts using the nearest neighbour algorithm:

tx.obsintp <- interpGrid(tx.obs, new.coordinates = getGrid(tx.forecast), method = "nearest")

[2016-05-12 14:12:10] Calculating nearest neighbors...

[2016-05-12 14:12:11] Performing nearest interpolation... may take a while

[2016-05-12 14:12:11] Interpolating member 1 out of 4

[2016-05-12 14:12:11] Interpolating member 2 out of 4

[2016-05-12 14:12:11] Interpolating member 3 out of 4

[2016-05-12 14:12:11] Interpolating member 4 out of 4

[2016-05-12 14:12:13] Done

Temporal aggregation

Now that the predictions are in the same grid than the observations, we can proceed with the verification. However, before we go on, we compute

seasonal averages of the forecasts and observations for validation of seasonal average daily maximum temperature. This is easily undertaken using

downscaleR's function aggregateGrid (in Linux and MacOS it is possible to speed-up the aggregation by using the parallelization option):

WikiPrint - from Polar Technologies

4

mn.tx.forecast <- aggregateGrid(tx.forecast, aggr.y = list(FUN = "mean"), parallel = TRUE)

Parallel computing enabled

Number of workers: 3

[2016-05-12 14:30:17] Performing annual aggregation in parallel...

[2016-05-12 14:30:18] Done.

mn.tx.obsintp <- aggregateGrid(tx.obsintp, aggr.y = list(FUN = "mean"), parallel = TRUE)

Parallel computing enabled

Number of workers: 3

[2016-05-12 14:30:28] Performing annual aggregation in parallel...

[2016-05-12 14:30:30] Done.

Now we are ready to compute validation scores on the 3-monthly mean daily maximum temperature forecasts. We next compute several typical

verification measures:

Verification measures using SpecsVerification? and easyVerification

Mean bias

bias <- veriApply("EnsMe",

 fcst = mn.tx.forecast$Data,

 obs = mn.tx.obsintp$Data,

 ensdim = 1,

 tdim = 2)

The object bias is a matrix with longitudes in columns and latitudes in rows. To do the plotting, we can use the coordinates of the reference grid of the

CFS forecast. For convenience, we will use the function image.plot from package fields (this should be already installed because it is a

dependency of downscaleR). In order to add a coastline map, we do a trick and call an internal function of downscaleR using the triple ::: notation:

fields::image.plot(tx.forecast$xyCoords$x,

 tx.forecast$xyCoords$y,

 t(bias),

 asp = 1, xlab = "", ylab = "", main = "Mean tmax bias - JJA")

downscaleR:::draw.world.lines()

WikiPrint - from Polar Technologies

5

The results reveal a significant cold bias of the CFSv2 model predictions.

Correlation

We follow a similar approach to compute the ensemble mean forecast correlation against the verifying observations:

corr <- veriApply("EnsCorr",

 fcst = mn.tx.forecast$Data,

 obs = mn.tx.obsintp$Data,

 ensdim = 1, tdim = 2)

fields::image.plot(tx.forecast$xyCoords$x,

 tx.forecast$xyCoords$y,

 t(corr),

 asp = 1, xlab = "", ylab = "",

 main = "Mean tmax correlation - JJA")

downscaleR:::draw.world.lines()

WikiPrint - from Polar Technologies

6

We find that the ensemble mean summer forecasts for 1991-2000 correlate well with the verifying observations over the north-western sector of the

analysis area, but the forecasts do not skilfully represent year-to-year variability over the Iberian Peninsula and the Mediterranean area.

Ranked probability skill score (RPSS)

We next illustrate the ranked probability skill score (RPSS). Here we use the RPSS for tercile forecasts, that is probability forecasts for the three

categories colder than average, average, and warmer than average. In order to convert observations and forecast in probabilities for the three categories,

we have to add an additional argument prob to the veriApply function with the quantile boundaries for the categories chosen. In this case, to indicate

that validation is performed on the terciles, we use the value prob=c(1/3,2/3), as indicated next:

rpss <- veriApply("EnsRpss",

 fcst = mn.tx.forecast$Data,

 obs = mn.tx.obsintp$Data,

 prob = c(1/3,2/3),

 ensdim = 1, tdim = 2)

In this case, the output is a list consisting of two components: The first one is the RPSS lon-lat matrix, as in the previous examples. The second one,

provides the standard error, useful to calculate the significance of the score at each particular grid point (at the 95% c.i. in this example):

RPSS map

fields::image.plot(tx.forecast$xyCoords$x,

 tx.forecast$xyCoords$y,

 t(rpss$rpss),

 asp = 1, xlab = "", ylab = "", main = "tmax RPSS - JJA")

downscaleR:::draw.world.lines()

Compute significant points and collocate spatially:

sig.i <- rpss$rpss > rpss$rpss.sigma*qnorm(0.95)

lons <- rep(mn.tx.obsintp$xyCoords$x, each = length(mn.tx.obsintp$xyCoords$y))

WikiPrint - from Polar Technologies

7

lats <- rep(mn.tx.obsintp$xyCoords$y, length(mn.tx.obsintp$xyCoords$x))

points(lons[sig.i], lats[sig.i], pch = 19)

Acknowledgements

These examples have been prepared by Jonas Bhend (Meteo Swiss), in collaboration with the Santander Met Group.

Package versions and session info

print(sessionInfo(), locale = FALSE)

R version 3.3.0 (2016-05-03)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.4 LTS

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] downscaleR_1.0-1 easyVerification_0.2.0 loadeR.ECOMS_1.0-0 loadeR_1.0-0 loadeR.java_1.1-0

[6] rJava_0.9-8 SpecsVerification_0.4-1

loaded via a namespace (and not attached):

[1] Rcpp_0.12.4 devtools_1.10.0 maps_3.1.0 MASS_7.3-44 evd_2.3-2 munsell_0.4.3 colorspace_1.2-6

[8] lattice_0.20-33 pbapply_1.1-3 plyr_1.8.3 fields_8.4-1 tools_3.3.0 CircStats_0.2-4 parallel_3.3.0

[15] grid_3.3.0 spam_1.3-0 dtw_1.18-1 digest_0.6.9 abind_1.4-3 akima_0.5-12 bitops_1.0-6

[22] RCurl_1.95-4.8 memoise_1.0.0 sp_1.2-3 proxy_0.4-15 scales_0.4.0 boot_1.3-17 verification_1.42

WikiPrint - from Polar Technologies

8

	Forecast verification: a worked example
	Package loading/install
	Data loading from the ECOMS-UDG
	Data preprocessing: interpolation and aggregation using downscaleR
	Data interpolation
	Temporal aggregation

	Verification measures using SpecsVerification? and easyVerification
	Mean bias
	Correlation
	Ranked probability skill score (RPSS)

	Acknowledgements
	Package versions and session info

