
WikiPrint - from Polar Technologies

1

The following examples are partly based on locally stored data. Only the loadSystem4 function does not require locally stored datasets because it

works by remotely accessing the System4 databases stored in the SPECS-EUPORIAS Data Server. Therefore, it is recommended that the meteoR.zip

file is downloaded and unzipped in a convenient directory. Once the zip file has been downloaded and unzipped, we will define the 'r' folder as the

working directory. Therefore, in the following examples all the path names given will be relative to the 'r' directory.

The following expression lists all the R functions available, read them and loads them into the R working session:

> rfuncs <- list.files(pattern = "\\.R$")

> print(rfuncs)

[1] "dataInventory.R" "loadData.R" "loadObservations.R" "loadSystem4.R" "makeNcmlDataset.R"

> for (i in 1:length(rfuncs)) {

+ source(rfuncs[i])

+ }

loadSystem4

In the next lines we describe an illustrative example of the loadSystem4 function. We will retrieve System4 simulation data for the Iberian Peninsula,

considering mean surface temperature for January and the first simulation member, for the 10-year period 1990-1999. This simple example has been

chosen because of the fast data access (note that this also depends on the connection speed). Using a standard broadband connection, loading the

following dataset took approximately 19 seconds:

> openDAP.query <- loadSystem4(dataset = "http://www.meteo.unican.es/tds5/dodsC/system4/System4_Seasonal_15Members.ncml",

+ var = "tas", members = 1,

+ lonLim = c(-10,5), latLim = c(35,45),

+ season = 1, years = 1990:1999, leadMonth = 1)

Data are now ready for analysis into our R session:

> str(openDAP.query)

List of 7

$ VarName : chr "Mean_temperature_at_2_metres"

$ VarUnits : chr "degC"

$ TimeStep :Class 'difftime' atomic [1:1] 1

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "days"

$ MemberData :List of 1

 ..$: num [1:310, 1:280] 13.3 13.9 12.5 13 13 ...

$ LatLonCoords : num [1:280, 1:2] 45 44.2 43.5 42.7 42 ...

 ..- attr(*, "dimnames")=List of 2

$: NULL

$: chr [1:2] "lat" "lon"

$ RunDates : POSIXlt[1:310], format: "1989-12-01" "1989-12-01" "1989-12-01" ...

$ ForecastDates:List of 2

 ..$ Start: POSIXlt[1:310], format: "1990-01-01" "1990-01-02" "1990-01-03" ...

 ..$ End : POSIXct[1:310], format: "1990-01-02" "1990-01-03" "1990-01-04" ...

A common task consists of the representation of data, e.g. by mapping the spatial mean for the period considered. Another common task is the

representation of time series for selected point locations/grid cells. In this example, we will map the mean temperature field for the period selected

(1990-99) preserving the original spatial resolution of the model. Furthermore, we will display time series of the requested dataset at four grid points

coincident with the locations of four Spanish cities. To this aim, we will make use of some base R functions and also from some contributed packages

that can be very useful for climate data handling and representation.

> # Calculation of the mean values of the period for each grid cell:

> mean.field <- colMeans(openDAP.query$MemberData[[1]])

> # Creation of a matrix with selected point locations:

> city.names <- c("Sevilla", "Madrid", "Santander", "Zaragoza")

> locations <- matrix(c(-5.9, 37.4167, -3.68, 40.4, -3.817, 43.43, -0.8167, 41.667), ncol=2, byrow = TRUE)

WikiPrint - from Polar Technologies

2

> dimnames(locations) <- list(city.names, c("lon","lat"))

> print(locations)

 lon lat

Sevilla -5.9000 37.4167

Madrid -3.6800 40.4000

Santander -3.8170 43.4300

Zaragoza -0.8167 41.6670

Note that the geographical coordinates of the requested spatial domain are nor perfectly uniform, and as a result it is not possible to represent the data

as a regular grid. To overcome this problem, we perform an interpolation, although we preserve the native grid cell size of the model (0.75deg) for data

representation. The R package ?akima provides a extremely fast interpolation algorithm by means of the interp function.

> lat <- openDAP.query$LatLonCoords[,1]

> lon <- openDAP.query$LatLonCoords[,2]

Requires "akima::interp" for regular grid (bilinear) interpolation

> library(akima)

> grid.075 <- interp(lon, lat, mean.field, xo = seq(min(lon), max(lon), .75), yo = seq(min(lat), max(lat), .75))

After the interpolation, data are now in a regular grid. Note that the object grid.075 is a list with the usual x,y,z components as required by many R

functions for gridded data representation (e.g. image, contour, persp...)

> str(grid.075)

List of 3

$ x: num [1:19] -9.75 -9 -8.25 -7.5 -6.75 ...

$ y: num [1:14] 35.2 36 36.7 37.5 38.2 ...

$ z: num [1:19, 1:14] 15.1 15.1 15 15 14.3 ...

In the following lines of code we plot the mean temperature field. In addition, we will also add to the map the point locations of the selected cities for

which the time series will be represented. The R package ?fields provides many useful tools for spatial data handling and representation, including a

world map that can be easily incorporated in our plots.

> # Representation of the mean temperature of the period

> library(fields)

> image.plot(grid.075, asp=1,ylab = "latitude", xlab = "longitude", col=topo.colors(36),

+ main = "Mean surface T January 1990-99", legend.args=list(text="degC", side=3, line=1))

Adds selected locations to the plot and puts labels:

> points(locations, pch=15)

> text(locations, pos=3, city.names)

Adds the world map to the current plot:

> world(add=TRUE)

Next, we plot the time series for the selected locations. To this aim, we calculate the nearest grid points to the specified locations. This can be easily

done using the function fields::rdist. Note that the output of loadSystem4 returns a matrix of Lat-Lon coordinates, as usually found in many

climate datasets. However, the usual format of 2D coordinates matrix in R is Lon-Lat. As a result, note that we specify the coordinates by reversing the

column order (i.e.: openDAP.query$LatLonCoords[,2:1] instead of openDAP.query$LatLonCoords):

> # Creation of a Euclidean distance matrix among all pairs of selected locations and grid points

> dist.matrix <- rdist(openDAP.query$LatLonCoords[,2:1], locations)

> # Positions of the nearest grid points

> index <- rep(NA,ncol(dist.matrix))

> for (i in 1:ncol(dist.matrix)) {

+ index[i] <- which.min(dist.matrix[,i])

+ }

> # index contains the column positions in the `MemberData` matrices

http://cran.r-project.org/web/packages/akima/index.html
http://cran.r-project.org/web/packages/fields/index.html

WikiPrint - from Polar Technologies

3

> locations.data <- openDAP.query$MemberData[[1]][,index]

> colnames(locations.data) <- city.names

> str(locations.data)

num [1:310, 1:4] 7.71 8.78 10.77 10.88 11.55 ...

- attr(*, "dimnames")=List of 2

 ..$: NULL

 ..$: chr [1:4] "Sevilla" "Madrid" "Santander" "Zaragoza"

The object locations.data is a matrix in which time series are arranged in columns for each of the four locations selected.

> ylimits <- c(floor(min(locations.data)), ceiling(max(locations.data)))

> plot(locations.data[,1], ty='n', ylim = ylimits, axes=FALSE, ylab="degC", xlab="Year")

> axis(1,at = seq(1,31*11,31), labels=c(1990:1999,""))

> axis(2, ylim=ylimits)

> abline(v=seq(1,31*10,31), lty=2)

> for (i in 1:ncol(locations.data)) {

+ lines(locations.data[,i], col=i)

+ }

> legend("bottomleft", city.names, lty=1, col=1:4)

> title(main = "Mean surface Temperature January")

loadObservations

The function loadObservations is intended to deal with observational datasets from weather stations stored as csv files in a standard format. In the

directory "./datasets/observations/Iberia_ECA" there is an example dataset.

> list.files("./datasets/observations/Iberia_ECA")

[1] "ecaIberia.nc" "Master.csv" "pr.csv" "tas.csv" "tasmax.csv" "tasmin.csv"

As we can see, there is a number of files with the name of the variables they store, and a Master.csv file, which contains the required metadata in order

to identify each station. This is how the Master.csv file looks like:

> master <- read.csv("./datasets/observations/Iberia_ECA/Master.csv")

> str(master)

'data.frame': 28 obs. of 5 variables:

 $ Id : int 33 229 230 231 232 233 234 236 309 336 ...

$ Longitude: num 1.38 -6.83 -3.68 -4.49 -4.01 ...

$ Latitude : num 43.6 38.9 40.4 36.7 40.8 ...

$ Altitude : int 151 185 667 7 1894 790 251 44 43 704 ...

$ Metadata : Factor w/ 1 level " Data provided by the ECA&D project. Available at http://www.ecad.eu": 1 1 1 1 1 1 1 1 1 1 ...

The Master contains the following fields:

• Id: Identification code of the station. This code is used as argument by the function loadObservations. Note thas this field should actually be read

as a character string, as internally done by the loadObservations function. However, in this case read.csv by default interpretes it as a

numeric value.

• Longitude: longitude

• Latitude: latitude

• Altitude: altitude

• Metadata: other metadata associated to the dataset

First of all we will plot the stations so that we can get an idea of their geographical situation and extent:

WikiPrint - from Polar Technologies

4

> library(fields)

> plot(master[,2:3], asp=1, pch=15, col="red")

> world(add=TRUE)

In order to get a vector with the correct IDs as character strings instead of numeric values, we can load again the corresponding column using the

argument colClasses = "character"

> stationIDs <- read.csv("./datasets/observations/Iberia_ECA/Master.csv", colClasses = "character")[,1]

> stationIDs

[1] "000033" "000229" "000230" "000231" "000232" "000233" "000234" "000236" "000309" "000336" "000414" "000416" "000420" "000421"

[15] "000788" "000800" "001392" "001398" "003904" "003905" "003907" "003908" "003922" "003928" "003936" "003947" "003948" "003949"

We place the labels on top of each location. There are ways to avoid the overlapping of labels in order to explore the dataset, for instance in an

interactive fashion by means of the identify function .

> text(master$Longitude + .2, master$Latitude + .2, stationIDs, cex=.7)

In this particular example we are interested in the mean surface temperature from the cities of Santander and Madrid. The station codes are "000230"

and "001392" for Madrid and Santander respectively. We will select the period 1990-1999.

> stationData <- loadObservations(source.dir="./datasets/observations/Iberia_ECA/", var="tas",

+ standard.vars=FALSE, stationID=c("000230","001392"), startDate="1990-01-01", endDate="1999-12-31")

> str(stationData)

List of 5

$ StationID : chr [1:2] "000230" "001392"

$ LatLonCoords: num [1:2, 1:2] 40.41 43.46 -3.68 -3.82

 ..- attr(*, "dimnames")=List of 2

$: NULL

$: chr [1:2] "Latitude" "Longitude"

$ Altitude : int [1:2] 667 64

$ Dates : POSIXlt[1:3652], format: "1990-01-01" "1990-01-02" "1990-01-03" "1990-01-04" ...

$ Data : num [1:3652, 1:2] 112 85 90 74 101 109 110 82 86 66 ...

 ..- attr(*, "dimnames")=List of 2

$: NULL

$: chr [1:2] "000230" "001392"

> plot(stationData$Dates, stationData$Data[,1], col = "red", type = "l")

> lines(stationData$Dates, stationData$Data[,2], col = "green")

> legend("topright", c("Madrid","Santander"), col = c("red","green"), lty=1, bg = "white")

Creating a dataset

Climate datasets of various types (e.g. reanalysis, RCM/GCM data...) are often stored as collections of netCDF files for each particular variable and/or

time slice. These files can be either locally or remotely stored. A convenient way of dealing with this kind of datasets is the use of NcML files. A NcML file

is a ?XML representation of netCDF metadata. By means of NcML it is possible to create virtual datasets by modifying and aggregating other datasets,

thus providing maximum flexibility and ease of access to data stored in collections of files containing data from different variables/time slices. The

function makeNcmlDataset is intended to deal with reanalysis, forecasts and other climate data products, often consisting of collections of netCDF files

of these characteristics.

In this example, we have chosen several variables commonly used in statistical downscaling applications belonging to the NCEP reanalysis, and stored

in different netCDF files. These variables are stored in the following directory:

WikiPrint - from Polar Technologies

5

> list.files("./datasets/reanalysis/Iberia_NCEP/")

[1] "NCEP_Q850.nc" "NCEP_SLPd.nc" "NCEP_T850.nc" "NCEP_Z500.nc"

The function makeNcmlDataset is used to conveniently aggregate the required information so that the inventory/loading functions point to the NcML

rather that to the netCDF files. The following call to the function wll create the NcML file in the current working directory:

> makeNcmlDataset(source.dir="datasets/reanalysis/Iberia_NCEP/", ncml.file="Iberia_NCEP_dataset.ncml")

[2013-05-20 10:00:51]

NcML file "Iberia_NCEP_dataset.ncml" created from 4 files corresponding to 4 variables

Use 'dataInventory(NcML file)' to obtain a description of the dataset

The function creates a new NcML file in the directory specified (in this case in the working directory, as no path has been specified), and gives some

information about the number of files and variables conforming the dataset. In the next section is described how to find out the different variables stored

in the newly created dataset and their characteristics.

dataInventory

With the aid of the dataInventoryfunction we can easily retrieve all the necessary information to access and manipulate the variables stored in a

dataset. In the following example, we get a description of the NcML dataset created in the previous section, containing several variables of the NCEP

reanalysis in the Iberian Peninsula.

> inv.iberiaNCEP <- dataInventory("Iberia_NCEP_dataset.ncml")

Structure of the inventory

> str(inv.iberiaNCEP)

List of 4

$ Q :List of 5

 ..$ Description: chr "Specific humidity"

 ..$ DataType : chr "float"

 ..$ Units : chr "kg kg**-1"

 ..$ TimeStep :Class 'difftime' atomic [1:1] 24

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "hours"

 ..$ Dimensions :List of 4

$ level:List of 3

$ Type : chr "Pressure"

$ Units : chr "millibar"

$ Values: num 850

$ time :List of 3

$ Type : chr "Time"

$ Units : chr "days since 1950-01-01 00:00:00"

$ Values: POSIXlt[1:16071], format: "1958-01-01" "1958-01-02" "1958-01-03" "1958-01-04" ...

$ lat :List of 3

$ Type : chr "Lat"

$ Units : chr "degrees north"

$ Values: num [1:6] 35 37.5 40 42.5 45 47.5

$ lon :List of 3

$ Type : chr "Lon"

$ Units : chr "degrees east"

$ Values: num [1:9] -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5

$ SLPd:List of 5

 ..$ Description: chr "Mean Sea Level Pressure; Mean daily value"

 ..$ DataType : chr "float"

 ..$ Units : chr "Pa"

 ..$ TimeStep :Class 'difftime' atomic [1:1] 24

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "hours"

 ..$ Dimensions :List of 3

$ time:List of 3

WikiPrint - from Polar Technologies

6

$ Type : chr "Time"

$ Units : chr "days since 1950-01-01 00:00:00"

$ Values: POSIXlt[1:16071], format: "1958-01-01" "1958-01-02" "1958-01-03" "1958-01-04" ...

$ lat :List of 3

$ Type : chr "Lat"

$ Units : chr "degrees north"

$ Values: num [1:6] 35 37.5 40 42.5 45 47.5

$ lon :List of 3

$ Type : chr "Lon"

$ Units : chr "degrees east"

$ Values: num [1:9] -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5

$ T :List of 5

 ..$ Description: chr "Temperature"

 ..$ DataType : chr "float"

 ..$ Units : chr "K"

 ..$ TimeStep :Class 'difftime' atomic [1:1] 24

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "hours"

 ..$ Dimensions :List of 4

$ level:List of 3

$ Type : chr "Pressure"

$ Units : chr "millibar"

$ Values: num 850

$ time :List of 3

$ Type : chr "Time"

$ Units : chr "days since 1950-01-01 00:00:00"

$ Values: POSIXlt[1:16071], format: "1958-01-01" "1958-01-02" "1958-01-03" "1958-01-04" ...

$ lat :List of 3

$ Type : chr "Lat"

$ Units : chr "degrees north"

$ Values: num [1:6] 35 37.5 40 42.5 45 47.5

$ lon :List of 3

$ Type : chr "Lon"

$ Units : chr "degrees east"

$ Values: num [1:9] -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5

$ Z :List of 5

 ..$ Description: chr "Geopotential"

 ..$ DataType : chr "float"

 ..$ Units : chr "m**2 s**-2"

 ..$ TimeStep :Class 'difftime' atomic [1:1] 24

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "hours"

 ..$ Dimensions :List of 4

$ level:List of 3

$ Type : chr "Pressure"

$ Units : chr "millibar"

$ Values: num 850

$ time :List of 3

$ Type : chr "Time"

$ Units : chr "days since 1950-01-01 00:00:00"

$ Values: POSIXlt[1:16071], format: "1958-01-01" "1958-01-02" "1958-01-03" "1958-01-04" ...

$ lat :List of 3

$ Type : chr "Lat"

$ Units : chr "degrees north"

$ Values: num [1:6] 35 37.5 40 42.5 45 47.5

$ lon :List of 3

$ Type : chr "Lon"

$ Units : chr "degrees east"

$ Values: num [1:9] -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5

WikiPrint - from Polar Technologies

7

As we can see, the inventory consists of a list of four elements, which are the four variables stored in the dataset:

> names(inv.iberiaNCEP)

[1] "Q" "SLPd" "T" "Z"

This is how we can check the spatial domain of the dataset:

> lats = inv.iberiaNCEP$SLPd$DimensionslatValues

> lons = inv.iberiaNCEP$SLPd$DimensionslonValues

> plot(expand.grid(lons,lats), asp=1)

'world' from library 'fields'

> world(add=TRUE)

loadData

Once the NcML dataset is created and we get an idea of the nature of the variables stored, the loadData function is used to retrieve the variables

desired at selected dimensional slices. In this particular example, we will load the temperature data from the NCEP reanalysis in the Iberian Peninsula.

We have a look again to the description of the variable temperature, as provided by the dataInventory:

> str(inv.iberiaNCEP$T)

List of 5

$ Description: chr "Temperature"

$ DataType : chr "float"

$ Units : chr "K"

$ TimeStep :Class 'difftime' atomic [1:1] 24

- attr(*, "tzone")= chr ""

- attr(*, "units")= chr "hours"

$ Dimensions :List of 4

 ..$ level:List of 3

$ Type : chr "Pressure"

$ Units : chr "millibar"

$ Values: num 850

 ..$ time :List of 3

$ Type : chr "Time"

$ Units : chr "days since 1950-01-01 00:00:00"

$ Values: POSIXlt[1:16071], format: "1958-01-01" "1958-01-02" "1958-01-03" "1958-01-04" ...

 ..$ lat :List of 3

$ Type : chr "Lat"

$ Units : chr "degrees north"

$ Values: num [1:6] 35 37.5 40 42.5 45 47.5

 ..$ lon :List of 3

$ Type : chr "Lon"

$ Units : chr "degrees east"

$ Values: num [1:9] -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5

As we can see, the variable T has vertical levels. In this case, the only level available is at 850 mb. The variable is daily, as we can see in the TimeStep

element of the list, and the original units are Kelvin.

There are several options for spatial selection using the 'loadData` function. For instance, if we want the whole domain of teh dataset ()

Using standard variables via vocabulary and dictionary

	loadSystem4
	loadObservations
	Creating a dataset
	dataInventory
	loadData
	Using standard variables via vocabulary and dictionary

